Final Report: Combining Interprocedural Compile-Time and
Run-Time Parallelization

DARPA contract DABT63-95-C-0118

USC/ISI Principal Investigator: Mary Hall
Caltech Principal Investigator: Carl Kesselman

This report describes the final results of a project revolving around an integrated automatic par-
allelization system that combines high quality interprocedural compile-time analysis with flexible
run-time support. This research builds on our previous extensive work on interprocedural compile-
time analysis for parallelization, sponsored by DARPA through contracts at Rice University and
Stanford University. The system is designed to address three core issues: (1) improving the ef-
fectiveness of compile-time parallelization analysis; (2) integration of compile-time analysis with
efficient run-time parallelization tests; and (3) managing an efficient mapping of parallel constructs
to a target architecture.

- This project was begun while Mary Hall, the original Principal Investigator, was a visiting
professor at Caltech. When Mary Hall moved to USC/ISI in June, 1996, the contracting agent
requested that the contract be moved to ISI as a subcontract to Caltech. For this reason, a Caltech
PI was named, Carl Kesselman, and Mary Hall was listed as a subcontractor.

This project has led to a large number of publications in prestigious conferences and journals,
and the five most significant of these are attached to this report. This document summarizes these
results; more detail can be found in the accompanying publications.

1 Key Results

The overall project consisted of four core research component areas, each of which will be described
in this section.

1.1 Improved Compile-Time Analysis

This project began as a continuation to a several-year, DARPA-sponsored effort at Stanford Uni-
versity (DARPA Contract F30602-95-C-0098) in which the PI participated as a Stanford research
associate prior to her positions at Caltech and University of Southern California. The goal of this
large effort at Stanford was to develop an automatic parallelizing compiler as part of the SUIF
compiler that surpassed the effectiveness of any other commercial or research system of the time.

19990607 026

The Stanford effort led to the most extensive experimental results on automatic parallelization ever
disclosed, including a recommendation and breakdown of the analyses that must be added to other
systems to replicate these results.

As the current project began, the results of this Stanford effort were still being gathered. As the
first step in the current project, we worked in collaboration with the group at Stanford headed by
Monica Lam to extend the automatic parallelization system as needed to parallelize the SPECFP95
BENCHMARKS, to complement previous results on the SPECFP92, NAS and PERFECT benchmark
programs. We also documented all of these results, and they have been summarized in two important
papers that were written during the current contract (see references [1] and [2]).

The most significant result appeared in reference [1]. We demonstrated through a combination
of parallelization analysis and locality optimizations results on SPECFP95 benchmarks that were
50% better than any previously reported results. We also performed extensive experimentation
across programs in four benchmark suites (see reference [2]). We found that the new analysis
techniques found in the Stanford SUIF system, namely interprocedural array data-flow analysis,
array privatization and array reduction recognition, were critical to parallelizing significant coarse-
grain computations that could yield parallel speedups on modern multiprocessors. We found that
a third of these programs spend more than 50% of their exeuction time in computations that
are parallelized with these techniques. We also found that the interprocedural analysis enabled
parallelizing very large loops, containing up to 1000 lines of code.

1.2 Instrumentation System for Identifying Remaining Parallelism

While the Stanford effort led to an overall successful automatic parallelization system, there were
still some remaining programs that yielded little or no parallel speedup. These results raised the
following questions: is the compiler exploiting all the available parallelism in these applications,
and if not, what new analyses can be developed to exploit the remaining parallelism? To answer
these questions, we built a system that instruments array and scalar memory accesses in loops left
sequential by the base SUIF parallelizer. At run time, the instrumentation indicates which of these
loops are actually parallelizable with the standard program input. Through this tool combined
with our high-quality parallelization analysis, we performed the first empirical measurement of the
gap between automatic parallelization and inherent parallelism in programs. This experiment was
performed across programs in the three benchmark suites, SPECFP95, NAS and PERFECT (see
reference [3]).

Our experiment found that the compiler was exploiting most of the available parallelism in these
applications, but it identified two major areas in which current parallelizing compiler technology
could be significantly improved.

e compiler analysis must take control flow paths into account to improve the precision of its
result.

e many loops are parallelizable only under certain program inputs, so run-time tests are required
to guarantee safety of parallelization.

system. With this modified data-flow analysis called predicated data-flow analysis, the compiler
derives, in addition to the usual conservative data-flow results, optimistic results guarded by pred-
icates that guarantee their correctness. These predicates can be used to derive conditions under
which dependences can be eliminated or privatization is possible. These conditions can be used
both to enhance compile-time analysis and to introduce run-time tests that guard safe execution of
a parallelized version of a computation.

As compared to previous work that combines predicates with array data-flow analysis, our
approach is distinguished by two features: (1) it derives low-cost, run-time parallelization tests; and,
(2) it incorporates predicate embedding and predicate extraction, which translate between the domain
of predicates and data-flow values to derive more precise analysis results. We present extensive
experimental results across three benchmark suites and one additional program, demonstrating that
predicated array data-flow analysis parallelizes more than 40% of the remaining inherently parallel
loops left unparallelized by the SUIF compiler (as determined by the instrumentation experiment)
and that it yields improved speedups for 5 programs (see reference [4]).

1.4 Adaptive Parallel Thread Allocation

We developed an approach to map parallel computations to a target architecture to improve uti-
lization of computer resources (see attached reference [5]). Most compilers use an all-or-nothing
static mapping of computations to processors: the computation executes on all the processors, or
if it is deemed too fine grained, executes sequentially. This standard approach works fine on small
numbers of processors such as the 8-processor target machines used in previous work on automatic
parallelizing compilers. But on larger numbers of processors, this approach can lead to a significant
waste of resources, where parallel computations executed on increasing numbers of processors yvield
diminishing returns. This waste of resources becomes more acute on parallel computers used as
multiprogrammed compute engines, where processors not being effectively used could be applied to
useful work in other applications.

To address this limitation, we developed and evaluated an extension to the SUIF run-time
system that adapts the number of processors allocated to a computation at run time, based on
how effectively it is using processor resources during the current execution of the program. This
approach not only adapts to varying amounts of parallelism within a single application but also
responds to increases in a multiprogrammed workload.

In collaboration with Margaret Martonosi at Princeton University, we performed on an experi-
ment on five programs from the SPECFP95 and NAS benchmark suite, examining 2 and 3 program
workloads on a 14-processor 95 MHz SGI Power Challenge system. We found that our run-time
approach improved workload performance up to 33% over one-at-a-time runs of the workload.

2 Publications Describing this Work

This project has supported research that has led to numerous publications in some of the premier
journals and conferences of parallel computing. We list the 11 most relevant publications in this
section. The first five of these will be included with the final report.

Five Most Significant Publications. The first five publications summarize the work described
in the previous section. They are numbered, and these numbers are used in references in the pre-
ceding descriptions.

[1] “Maximizing Multiprocessor Performance with the SUIF Compiler,” M. Hall, J. Anderson, S.
Amarasinghe, B. Murphy, E. Bugnion and M. Lam. IEEE Computer 29(12) (Dec. 1996).

[2] “Interprocedural Parallelization Analysis in SUIF,” by M.W. Hall, S. Amarasinghe, B. Murphy,
S. Liao and M. Lam. Manuscript accepted for publication in ACM Transactions on Programming
Languages and Systems, to appear.

[3] “Evaluating Automatic Parallelization in SUIF,” by B. So, S. Moon and M. W. Hall, Manuscript
accepted for publication in IEEE Transactions on Parallel and Distributed Systems, to appear.

[4] “Evaluation of Predicated Array Data-Flow Analysis for Automatic Parallelization,” by S. Moon
and M.W. Hall, in Proceedings of the ACM Symposium on Principles and Practice of Parallel Pro-
gramming, May, 1999.

[5] “Adaptive Parallelism in Compiler-Parallelized Code,” by M.W. Hall and M. Martonosi, Con-
currency: Practice and Erperience, 10(14) (1998).

Other Journal Publications. A few additional journal publications related to this project are
as follows.

“Combining Compile-Time and Run-Time Parallelization,” S. Moon, B. So and M.W. Hall, Invited
paper from LCR '98 in Scientific Programming. to appear.

"Multiprocessors from a Software Perspective,” S. Amarasinghe, J. Anderson, C.S. Wilson, S. Liao.
B. Murphy R. French, M.S. Lam, M.W. Hall. Invited paper selected as a Hot Chips '95 award
paper, IEEE Micro 16(3) (Jun. 1996).

Other Conference and Workshop Publications. These are additional refereed papers ap-
pearing in workshops and conferences.

“Measuring the Effectiveness of Automatic Parallelization in SUIF,” Byoungro So, Sungdo Moon
and Mary Hall, to appear in International Conference on Supercomputing, Melbourne, Australia,
July, 1998.

“Predicated Array Data-Flow Analysis for Run-Time Parallelization,” Sungdo Moon, Mary Hall and
Brian Murphy, to appear in International Conference on Supercomputing, Melbourne, Australia,
July, 1998.

“A Case for Combining Compile-Time and Run-Time Parallelization,” S. Moon, B. So, M.W. Hall.
and B. Murphy, in Proceedings of the Workshop on Languages, Compilers and Run-time Systems
for Parallel Computing, Pittsburgh, May, 1998.

"Detecting Coarse-Grain Parallelism Using an Interprocedural Parallelizing Compiler,” M.W. Hall,
S.P. Amarasinghe, B.R. Murphy, S. Liao and M.S. Lam, in Proceedings of Supercomputing 95,

)

December ’95.

3 Major Deliverable

In addition to the numerous publications describing the work, listed above, there was a major
deliverable in the form of released software.

We released the compiler-parallelized Specfp95 applications that have been used in experiments
described by publications that are part of this project. We arranged with the SPEC committee
to release these applications to licensed SPEC users, and we have provided them with a copy of
all the code and accompanying Makefiles and information. We envision these applications will be
the compiler equivalent of the hand-parallelized SPLASH-2 benchmarks, and that they will become
commonly used by members of the architecture research community in evaluating system features.

Information on this release can be found on the SPEC website,
http://www.spechench.org/osg/cpu95/par-research, and is also announced on the Stanford SUIF
website http://suif.stanford.edu.

4 Personnel Involved

This project was primarily carried out by the Principal Investigator. Mary Hall, and her two USC
Phd students. Sungdo Moon and Byoungro So. The adaptive thread management work in Sec-
tion 1.4 was a collaborative effort with Margaret Martonosi at Princeton, and included work by
research programmer Kimo Yap. The early work described in Section 1.1 involved collaboration
with Monica Lam and her students at Stanford.

REPORTDOCUMENTATIONPAGE FormApproved

OMBN0.07040188

Pubﬁcrepoﬂmgburdenlonhiscouednono(nfomlatioms‘eslmated}oayerage1hOurpeﬂes nse, includingthetme(oc reviewinginstructions,searchingdatasources,
gatheringandmaintainingthed ded.andcompletingandreview ecollectionofinformation, S nisregarding thisburd i ranyotheraspectofthiscollection
ofinformation.inciudingsuggestionsforreducingthisburdentoWashingtonHeadquarters Service, Directorateforinformanon OperationsandReports,

1215 JeflersonDavisHighway, Suite 1204, Arington, VA222024302,andlof ceofManagementandBudget,
PaperwotheducﬂonP?ojecx(omlm 88)Washington, DC20503.

PLEASEDONOTRETURNYOURFORMTOTHEABOVEADDRESS.

1.REPORTDATE (DDMMYYYY) 2Report Type: 3.DATESCOVERED (FromTg)
05-05-1999 Final Technical 09-11-1995 - 09-10-1998
4. TITLEANDSUBTITLE _ 5a.CONTRACTNUMBER
DABT 63-95-C-0118
5b.GRANTNUMBER

Effective Parallelization Via Interprocedural
Compile-Time, Run-Time and Interactive Techniques N/A

SC.PROGRAMELEMENTNUMBER

6.AUTHOR(S) 5d.PROJECTNUMBER
Carl Kesselman 5e.TASKNUMBER
Mary Hall

Sf.WORKUNITNUMBER

7.PERFORMINGORGANIZATIONNAME (S)ANDADDRESS(ES) 8.PERFORMINGORGANIZATION
REPORTNUMBER
California Institute of Technology
Mail Code 213-6

Pasadena, CA 91125

9.SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES) 10.SPONSOR/MONITOR'SACRONYM(S)

Directorate of Contracting SPONSORNGONITORING
. _ _ 11.SPON

Attn: A7ZS-DKO-I AGENCYREPORTNUMBER

Post Office Box 12748

Ft. Huachuca, AZ 85670-2748

12.DISTRIBUTIONAVAILABILITYSTATEMENT

Approved for public release; distribution is unlimited

13.SUPPLEMENTARYNOTES

14.ABSTRACT

This report describes the final results of a project revolving around an integrated
allelization system that combines high quality interprocedural compile-time analysis
with flexible run-time support. This research builds on our previous extensive work on
interprocedural compile-time analysis for parallelization, sponsored by DARPA through
contracts at Rice University and Stanford University. The system is designed to
address three core-issues: (1) improving the effectiveness of compile-time
parallelization analysis; (2) integration of compile-time analysis with efficient
run-time parallelization tests; and (3) managing an efficient mapping of parallel
contracts to a target architecture

15.SUBJECTTERMS

Parallel Computing; Compilers; Run-time Systems

. 17.LIMITATIONOF 18.NUMBER {19a.NAMEOFRESPONSIBLEPERSON
16.SECURITYCLASSIFICATIONOF: ABSTRACT OFPAGES
a.REPORT b.ABSTRACT C.THISPAGE

19b.TELEPONENUMBER(/ncludeareacode)

StandardForm298(Rev.898)
PrescribedbyANSIStdZ3918

PTIC QUTALITY INSPECTED]

